1777年的一天,法国数学家蒲丰约请许多朋友到家里,要做一次试验。
蒲丰在桌子上铺好一张大白纸,白纸上画满了一条一条等距离的平行线,他又拿出很多等长的小针,每根小针的长度都是平行线距离的一半。
蒲丰说:“请大家把这些小针一根一根地往这张白纸上随便扔吧!”客人们你看看我,我看看你,谁也弄不清楚他要干什么,但还是把小针一根一根地往白纸上乱扔。扔完了,他们又把针捡起来再扔。蒲丰却在一旁紧张地记数。他统计的结果是:大家共掷2212次,其中小针与纸上平行线相交704次,蒲丰做了一个除法:2212÷704≈3.142
蒲丰说:“诸位,这个数是圆周率π的近似值。”客人们觉得十分奇怪:这样乱扔和圆周率π怎么会有关系呢?
蒲丰解释说:“大家怀疑这个试验?你们还可以再做,每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。