题目:有位商人带了不少米,准备出城做生意。走到内关关口,见皇榜昭示:“持米出此关者,7斗付税1斗。”无奈,此人不得不拿出米来付税。到了中关,还要付税,只不过是:5斗米付税1斗。到了外关,3斗米付税1斗。好不容易走出了三个关口。商人查点一下自己的米,只剩下5斗了。
这位商人起初究竟带了多少米呢?
这就是我国古代三大数学名著之一——《九章算术》中记载的一道名题,后人称之为“剩数问题”。这位商人走出三个关口后,还剩5斗米,那么把这“5斗米”看作单位“1”,由3斗米付税1斗,可知5斗米的对应分率为(1-)。这样,在关外还未付税时,即商人走出前两关后,有米5÷(1-)=7(斗)。再把“7斗”看作单位“1”,出中关5斗米付税1斗,“7斗”的对应分率为(1-),这样,商人在中关未付税时,即过内关后,有米7÷(1-)=9(斗)。
同样道理,把“9斗”看作单位“1”,在内关7斗米付税1斗,对应分率为(1-)。这样此人未付税时所有的米是9÷(1-)=10(斗)。
综合算式:5÷(1-)÷(1-)÷(1-)=10(斗)。