数学不是需要精确吗?怎么会需要模糊呢?你先别着急,这里给大家讲几个例子。
第一个例子:1粒种子肯定不能叫一堆,2粒也不是,3粒也不是……那么多少粒种子叫一堆呢?适当的界限在哪里呢?我们能否说123456粒种子不叫一堆,而123457粒种子叫一堆呢?
再举一个例子,我们现在要从一片西瓜地里找出一个最大的西瓜,那是件很麻烦的事。必须把西瓜地里所有的西瓜都找出来,再比较一下,才知道哪个西瓜最大。西瓜越多,工作量就越大。如果按通常说的,到西瓜地里去找一个较大的西瓜,这时精确的问题就转化成模糊的问题,反而容易多了。由此可见,适当的模糊能使问题得到简化。
确实,像上面的“一粒”与“一堆”,“最大的”与“较大的”都是有区别的两个概念。但是它们的区别都是逐渐的,而不是突变的,两者之间并不存在明确的界限,换句话说,这些概念带有某种程度的模糊性。类的,我们说一个人很高或很胖,但是究竟多少厘米才算高,多少千克才算胖呢?像这里的高和胖都是很模糊了。
饭什么时候才算熟了?衣服什么样才能算洗干净?这些都是需要一门新的数学分支——模糊数学来帮助解决的问题。为此,1965年美国的祖德教授开创了对“模糊数学”的研究。现在,模糊数学在各行各业中得到了广泛的应用。